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AePW-2 Cases

Casel Case 2 Optional Case 3
A B C
Mach 0.7 0.74 0.85 0.85 0.85
Angle of 3 0 5 5 5
attack
Dynamic Forced Flutter Unforced Forced Oscillation Flutter
Data Type Oscillation Unsteady
Notes: * Attached flow ¢ Unknown flow < Separated flow ¢ Separated flow ¢ Separated flow
solution state effects effects effects on
aeroelastic
solution
* Oscillating * Pitch and * Oscillating * Oscillating Turn
Turn Table Plunge Turn Table Table (OTT) * No
(OTT) exp. Apparatus (OTT) experimental experimental
data (PAPA) exp. experimental data data for

data data comparison



FUN3D Core Capabilities

http://fun3d.larc.nasa.gov/

Established as a research code in late 1980s; now supports
numerous internal and external efforts across the speed range

Solves 2D/3D steady and unsteady Euler and RANS equations
on node-based mixed element grids for compressible and
incompressible flows

General dynamic mesh capability: any combination of
rigid / overset / morphing grids, including 6-DOF effects

Aeroelastic modeling using mode shapes, full FEM, etc.
Constrained / multipoint adjoint-based design and mesh adaptation

Distributed development team using agile/extreme software
practices including 24/7 regression, performance testing

Capabilities fully integrated, online documentatlon
training videos, tutorials




Some Recent NASA Applications

Courtesy
Bob Bartels

Open-Rotor Concepts

Aeroelastic Analysis of
the Boeing SUGAR
Truss-Braced Wing
Concept

Courtesy Bill Jones

FUN3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 NED 1

Fuly Unstuctured Navier-Siokes



Some Recent NASA Applications

Transonic Buffet
Characterization for
Space Launch System

Courtesy
Greg Brauckmann,
Steve Alter, Bil Kleb

FUN3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 ngu?mmmm



Some Recent NASA Applications

Courtesy Bill Jones

Distributed Electric
Propulsion

Courtesy
Mike Park, Sally Viken,
Karen Deere, Mark Moore

FUN3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 Nﬁ,mmmm 7




FUN3D and High-Performance Computing

FUN3D is used on a broad range of HPC
installations around the country
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FUN3D Aeroelastic Capabilities

¢ Built upon elasticity PDE-based mesh deformation
¢ Built in modal structural solver, same as in CAP-TSD, CFL3D, Overflow
= Typically uses mode shapes from NASTRAN normal modes analysis
¢ Coupling to external FEM/CSD codes
= Read surface displacements obtained from FEM
" Write aerodynamic loads (C,, C,, C;, C;,) for FEM

= Requires CFD/CSD transfer middleware
= Special case: rotorcraft comprehensive CSD codes, CAMRAD, DYMORE



FUN3D Mesh Deformation

Model the mesh as a linear elastic solid governed by

V [u(Vu+Vu' ) +A(V-uw)l]= f =0

Eu o E
(L+u)(1- 2u) 2(1+0)

Choose Poisson’s ratio and Young’s modulus to close system
= U=const, E=EQIV)or E(1/d)
= Smaller cells or cells closer to surface are stiffer
Solve linear PDE
» Large fraction (typ. 30% or more) of cost of flow-solver step
= Eventually will employ multigrid to speed up solution
Geometric Conservation Law (ALE formulation) accounted for
= Essential for free stream preservation on deforming meshes
= Appears as a source term in flow equation residuals
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@ FUN3D Analysis Process




Angle of
attack
Dynamic
Data Type

* Unknown flow
state

* Pitch and
Plunge
Apparatus
(PAPA) exp.
data
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AePW-2 Case 2, Mach 0.74, AocA =0°

BSCW analysis in FUN3d + SA
Medium Grid
Mach 0.74, gbar 169, aoa 0
Flutter analysis with time step DTmod2, 24.375
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AePW-2 Case 2, Mach 0.74, AocA =0°

BSCW FUN3D URANS + SA Dynamic Aeroelastic Analysis
Medium Grid '
Mach 0.74, Mean angle of attack 0 degs,

Dynamic pressure 168.8 psf

——— DT =1.2, dt = 0.0002 seconds/sample (Fine)
————— DT =12.1, dt = 0.002 sec/sample (Medium)
DT = 24, dt = 0.004 sec/samp (Mod2)
~— DT = 61, dt = 0.01 sec/sample (Mod1)
DT 121, dt = 0.02 sec/sample (Coarse)
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@AePW 2 Case 2, Mach 0.74, AoA =0°, g=169 psf==

Upper surface

Lower surface
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@ AePW-2 Case 3B, Mach 0.85, AoA =5°

Upper surface

Lower surface
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EF  AePW-2 Case 3C, Mach 0.85, AoA = 5°

Mach

Angle of
attack

Dynamic
Data Type

* Separated flow
effects on
aeroelastic
solution

No
experimental
data for
comparison




AePW-2 Case 3C, Mach 0.85, AoA =5°

Flutter dynamic pressure, psf

Flutter frequency, Hz

Mesh / Turb. No Limiter Limiter No Limiter Limiter
Model
Coarse / SA 455 665 4.85 4.65
Medium / SA 477 503 5.2 5.1
Fine / SA 390 482 5.0 4.8
Fine / DDES 565 X 5.1 X

Note: Venkatakrishnan Limiter
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Static aeroelastic solution at g’s near flutter onset: fine grids
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AePW-2 Case 3C, Mach 0.85, AoA = 5° AR
e ase 3C, Mac , Ao ===

Flutter Onset at AoA =5°, Coarse Grid, No Limiter
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AePW-2 Case 3C, Mach 0.85, AoA = 5° AR
e ase 3C, Mac , Ao ===

Mach 0.82 5

Static aeroelastic solutions:
Skin friction and streamlines
at dynamic pressure
near flutter onset
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@ AePW-2 Case 3C, Mach 0.85, AoA =5°

Q =204 psf Q = 816 psf
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Conclusions ==
-._———a

¢ |t takes too long and significant computational resources
are required to obtain flutter boundary prediction on a
simple configuration like BSCW.

¢ There is need for tools like Reduced Order Methods to
obtain flutter boundary prediction quickly.

¢ Spatial and temporal convergence analysis are necessary.
¢ 2D airfoil section analysis vs. 3D analysis.
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BSCW Analysis Using FUN3D, Medium Grid, Rigid Steady Analyses
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Center of pressure location, non-dimensional location (x/c), aft of the leading edge

BSCW Analysis Using FUN3D, Medium Grid, Rigid Steady Analyses
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FUN3D Analysis, Medium Grid, Mach 0.74, Steady Rigid Analysis FUN3D Analysis, Medium Grid, Mach 0.74, Steady Rigid Analysis
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FUN3D Analysis, Medium Grid, Mach 0.82, Steady Rigid Analysis FUN3D Analysis, Medium Grid, Mach 0.82, Steady Rigid Analysis
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FUN3D Analysis, Medium Grid, Mach 0.70, Steady Rigid Analysis FUN3D Analysis, Medium Grid, Mach 0.70, Steady Rigid Analysis
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